GOMO BGC Argo in the North Atlantic

PIs David Nicholson, Susan Wijffels WHOI
Contributions from Ellen Park, Shawnee Traylor, Anabella Amato, WHOI
Matt Dever, RBR, Dasha Atamanchuk, Dalhousie, Clark Richards, DFO
US Argo @MBARI, UW, SIO, PMEL, AOML
the EXPORTS team
WHOI float group team
GOMO-funds build capacity @WHOI to support OneArgo goal of a sustained, global backbone observing system

WHOI: 32 Seabird BGC Navis floats since 2020 (mostly GO-BGC)

Work closely with US Argo (MBARI, UW, SIO, PMEL, AOML) and international partners

*OneArgo = Core + Deep + BGC components
Why should Congress fund your work?

Sound policy for the future must be informed by quality observations today

At what rate will the ocean continue to take up anthropogenic carbon?
How will ecosystems respond to a changing ocean?
What is the efficacy of potential climate solutions such as marine carbon dioxide removal?

We need not fly blind - BGC Argo is a realtime alert system monitoring ocean C/O$_2$/N cycles and ecosystem health.
GOMO-funded BGC Argo @ WHOI

2 deployed at the Bermuda Atlantic Time Series (BATS)

2 deployed at Porcupine Abyssal Plain (EXPORTS)

1 in production for 2023 deployment

*1203 funded by NASA OBB, operated w/ GOMO funds
Seabird Navis BGC
CTD
Chlorophyll
Backscatter
CDOM
Dissolved Oxygen
pH
Nitrate
We are not only deploying floats....

(1) Improving quality across BGC Argo by correcting dynamic error in oxygen sensors

(2) GOMO assets contribute to the NASA-funded EXPORTS biological carbon pump process study

(3) GOMO observations used in DEIA and community outreach
Oxygen sensor response time

What is new? What is challenging? What is important?

Dynamic error is a leading source of bias in the Argo Oxygen dataset

Consistency needed across sensor models

1st order response to step change

Ellen Park, Ph.D. student in Nicholson Lab is lead
Collabs: M. Dever, RBR, C. Richards, DFO and D. Atamanchuk, Dalhousie
NOAA GOMO supported project - Ellen supported by NSF funding
Oxygen sensor response time
What is new? What is challenging? What is important?

Oxygen sensor response time

Aanderaa 4831
WTO701 foil

Aanderaa 4831
Pst3 foil

RBRcoda ODO
slow foil

PyroScience
Pico O_2

Response Time (s)

Nominal Flow Speed [cm/s]

AA4330WTW (16°C): 167.14x^{-0.4710}
AA4330WTW (6°C): 186.82x^{-0.4891}
AA4330 (16°C): 125.8x^{-0.4824}
AA4330 (6°C): 150.01x^{-0.5209}
RBR(SLOW) (16°C): 62.38x^{-0.4695}
RBR(SLOW) (6°C): 68.54x^{-0.4917}
PYRO-PICO (16°C): 5.6x^{-0.3974}
PYRO-PICO (6°C): 6.31x^{-0.4830}

[Park et al., in prep]
What is new? What is challenging? What is important?

EXPORTS Biological Carbon Pump

Shawnee Traylor, Ph.D. student in Nicholson Lab is lead. Collabs: Many from EXPORTS

Glider and float data combined to quantify carbon export

Science funded by NASA - leveraging GOMO-funded BGC Argo float

[Traylor et al., in prep]
DEIA and community outreach

Bella Amato, 2022 WHOI NSF Summer Student Fellow - project used GOMO BATS float data

Nicholson organizer for float data workshop

GO-BGC/BGC-Argo
Float Data Workshop
UMass Boston
August 21-23, 2023

GO-BGC Adopt-a-Float led by MBARI connects WHOI floats with classrooms
Some Challenges & Ideas

Argo = power in numbers

of floats deployed
of BGC Argo data users
of partner agencies/funders/collaborators
of deep domain experts in float groups
of budding scientists engaged/trained
Some Challenges & Ideas

Incredible progress and growth for BGC Argo over last few years...but sustained funding for OneArgo plan has not been secured

Our challenge is to: sustain these gains, maintain our expert workforce and continue to expand use of BGC Argo observations by broad range of stakeholders

Collaborate with adjacent communities (glider obs, remote sensing, modelers, ...)