

Sustained Global Scale Biological Observations

H Alexander

S Clayton

J Graff

N Poulton

L Thompson

Are ocean plankton biodiversity and their ecosystem functions affected by climate change?

Are ocean plankton biodiversity and their ecosystem functions affected by climate change?

The **vision** of **Bio-GO-SHIP** is to develop a deep understanding of the link between the physio-chemical environment and the *diversity of global ocean plankton* and their *biogeochemical roles* in the context of a changing ocean.

Growing international effort

Started in 2016 w. IO9N

Completed 10 sections (+1 ongoing)

Largest pelagic ocean assessment of biodiversity

International partners

Supporting opportunities for diverse students

International

Initial phase has revealed many challenges

- Measurement standardization
 - We are working with the wider research community on intercalibration, validation, and protocol development
- Data sharing
 - We hosted a NOAA supported workshop to initiate store and share the diverse forms of biological observations. We now have several working groups aimed at organizing data sharing.
- Stakeholder products
 - We have formed working groups to develop higher-level data products (e.g., size structure, biodiversity, biogeochemical indices)

RESEARCH

OCEAN MICROBIOLOGY

Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation

Lucas J. Ustick ¹†, Alyse A. Larkin²†, Catherine A. Garcia², Nathan S. Garcia², Melissa L. Brock¹, Jenna A. Lee², Nicola A. Wiseman², J. Keith Moore², Adam C. Martiny^{1,2a}

Genomic biomarkers describe type and severity of nutrient stress

Integration of genomics and satellite remote sensing provide first global nutrient stress product

Top multi-annual mode follows ONI (ENSO cycles)

Martiny, Ustick, Westberry, Behrenfeld. Genomic-to-space measurements reveal global ocean nutrient stress. In review, *Nature*.

Summary

- Sustained biological parameters are chronically undersampled in time and space, specifically Essential Ocean Variables (EOVs).
- Mature technologies exist enabling consistent and routine observations of biological EOVs.
- A ship-based global biological observing program will form the backbone for supporting innovation in new biological sensors and sampling technologies.
- QA/QC, methods intercalibration and a clear and consistent data policy is key to making biological data FAIR, this will drive new innovations in model parameterization, data science and cal/val.
- Integration between GO-SHIP and Bio-GO-SHIP facilitate novel ways of detecting ocean changes