Argo’s technology advancements

Sarah Purkey, Nathalie Zilberman, Steve Riser, & The US Argo consortium
GOMO’s technology investment: Past to future

- Autonomous observations are synonymous with robotic technology
- Continuous technology investments are needed to maintain and expand the Argo program
- Technology development is an incremental process: investment needs to be done years in advance to prepare for future needs
- Autonomous platforms are instrumental contributors to a sustainable, innovative, valuable and integrated global ocean observing system
Float Contributions

Private Industry
- Seabird Scientific
- MRV Systems
- Teledyne Webb

Government/University labs
- WHOI
- AOML
- PMEL
- SIO
- US GDAC
- UW

OneArgo
- BGC
- Deep
- Core

Core contributions include government/university labs and private industry, with OneArgo incorporating these contributions.
GOMO’s investment in float technology

GOMO’s investment

- Continued development of the Iridium communication
- Increased float battery efficiency
- Software improvements
- Bottom detection
- Ice detection
- Integration of new sensors
- Testing of sensor and float performances
- Monitoring of sensor performance and providing direct feedback to industry
- Continued investment in data management and QC

Impact on Argo

U.S. Floats deployed in early 2000s: $277/profile

U.S. Floats deployed in late 2010s: $185/profile

SeaBird Scientific
MRV Systems
Teledyne Webb
GOMO’s investment in the BGC SOLO (NOPP)

GOMO’s investment

- Develop a new model of BGC Argo float based on the reliable SOLO-II
- Carry all 6 required BGC sensors
- 6+ years of life expectancy
- Expands US’s manufacturing capability to support OneArgo’s need

Results

4 floats deployed to date
First US float to carry all 6 BGC sensors

MRV Systems
GOMO’s investment in the BGC NAVIS & Sensors (NOPP)

GOMO’s investment

- Work with SBE to develop
 - O_2 sensor within air capabilities,
 - Improved pH sensor,
 - New fluorometer that measures 435nm in addition to 455nm
- Integrate a radiometer on an APEX to become a 6-sensor float
- Increase volume of NAVIS to add batteries and increase lifetime and performance

Results

- O$_2$ [5 prototypes deployed]
- pH [4 prototypes deployed]
- Radiometer [4 prototypes deployed]

SeaBird Scientific
GOMO’s investment in the Deep SOLO (NOPP)

GOMO’s investment

- Develop a Deep Argo float model capable of profiling to 6000-m depth within 3 m of the seafloor
- Develop a Deep Argo SBE CTD approaching GO-SHIP pressure, temperature, and salinity accuracies
- 6+ years of estimated lifetime

Results

- 6 NOPP Deep SOLOs deployed April 2021, 6 additional NOPP deployments scheduled November 2022

MRV Systems

- Deep SOLO licensed to MRV systems in 2015
- 60 SIO and 43 MRV Deep SOLOs are active

SeaBird Scientific

- SIO-SBE NOPP to test new pressure sensors and improve salinity measurements
Future plans and opportunities

- Autonomous ocean observing is dependent on continuous innovation, both of current and envisioned sensors and platforms.
- GOMO fills a pivotal role in the ocean observing network through sustained investment in robotic technology development.
- Technology investment goes beyond Argo, e.g., Gliders.
- Argo has long-standing co-dependent relationships with the private sector, providing an excellent example of how government investment can be mutually beneficial to academia and industry and excel innovation.

- Deep Argo is at a crossroad where additional funds are urgently needed to sustain investments from float and sensor manufacturers and maintain credibility to the scientific community that a global Deep Argo array will be implemented.
- Additional funds are needed to support collaborations between manufacturers and U.S. float providers to continue advances in Argo CTD and float technology.
Additional Slides